News

Invisible Learning

Viewing posts tagged Invisible Learning

Learning in Knowmad Society: Making invisible learning visible

Preface: Today, the Waag Society (institute for art, science and technology) released a new publication, Spelen leren, lerend spelen (“Playing games, learning games”). I have a short article article in the magazine, which was published in Dutch. Here’s an English translation:

In 1980, Seymour Papert predicted that computers would fundamentally transform education –and ultimately make schools, themselves, redundant. 30 years later, computers in schools are the norm, but we are still teaching the old way. Why?

In education, we have a hard time disentangling technologies from our conversations about innovations in learning. Too often, we place technologies in the forefront, which end up obscuring authentic knowledge formation. We often take the best technologies and squander the opportunities they afford us. Our knowledge-based societies demand a deeper change in our culture of teaching, and, particularly, in the ways in which we learn (and unlearn).

Moreover: The impacts of accelerating technological and social changes on education are enormous. Today’s stakeholders in our youths’ future must prepare them for futures that none of us can even dream are possible. We need to rethink and explore all the “invisible” (non-formal, non-certified, but equally relevant) ways of learning in a world where personal knowledge development, comprised of both tacit and explicit elements, is rapidly becoming more valuable than commodified, industrial-style information delivery. How can we create innovators, capable of leveraging their unique imaginations and creativity?

In the Invisible Learning project, we sought to research and share experiences and innovative perspectives, focused on rethinking strategies and innovative approaches to learn and unlearn continuously. We highlighted the importance of critical thinking of the roles of formal, informal, non-formal and serendipitous education at all levels – which can contribute to the creation of sustainable processes of learning, innovating and designing new cultures for a global society.

In the Invisible Learning paradigm, “just in case,” rote memorization is replaced with learning that is intended to be personally meaningful for all participants in the learning experience. Moreover, the application of knowledge toward innovative problem solving takes primacy over the regurgitation of previous knowledge or so-called “facts.”

Education in the Invisible Learning paradigm enables students to act on their knowledge, applying what they know to solve problems – including problems that have not been solved before. This contextual, purposive application of personal knowledge to create innovative solutions negates the value of non-innovation-producing regimes (i.e., standardized testing).

The purposive application of technologies can help. Our questions around educational improvement should therefore not be around what to learn, but rather about how we can learn. And, how we can make what we learned invisibly visible.

Invisible Learning: The first 365 days of open access

On September 15, 2011, Cristóbal Cobo and I released Invisible Learning (published in Spanish as Aprendizaje Invisible) into the Creative Commons as an open digital text. The printed edition, published by the University of Barcelona, was available since April of that year, and is still available for purchase through a number of sources, including Amazon.es.

We’ve counted well over 50,000 direct downloads of the PDF edition of the book from invsisiblelearning.com. By itself, this number is impressive for an education book (most printing are limited to just a thousand or two copies), but it probably grossly underestimates the total reach of Invisible Learning. The book is also distributed on a number of other websites, including Google Books, institutional digital collections, blogs, and others.

We are also really pleased with the media response and derivative products being created from Invisible Learning — some of the most interesting pieces are cataloged at aprendizajeinvisible.tumblr.com.

For those of you looking for Invisible Learning in English, the book will be summarized in the first two chapters of Knowmad Society, to be released later this year. Stay tuned!

Continuing the conversation

Join the Aprendizaje Invisible Facebook group, or follow us on Twitter:

If you’re interested in organizing a presentation or workshop about Invisible Learning at your organization, we’d love to talk with you!

Invisible Learning in Buenos Aires

I recently gave the opening keynote at the Telefónica Foundation’s VII Encuentro Internacional de Educación 2012-2013 in Buenos Aires, which has taken on relationships between education, society, and work as its first theme. I shared my thoughts on Knowmad Society as it relates to the Invisible Learning paradigm. Telefónica filmed the talk, and is graciously sharing it on YouTube (note: with Spanish voice-over).

Spanish and Portugese speakers will enjoy the ongoing conversation at the Telefónica Foundation’s social network: http://encuentro.educared.org/

Rethinking human capital development in Knowmad Society

Note: This text is adapted from the original Spanish-language text that I wrote for the first Chapter 1 in Invisible Learning (a book co-written with Cristóbal Cobo). An updated and expanded version of this text will also appear in the next volume, Knowmad Society, due for release later in 2012, and is being shared early to ignite discussion for the upcoming On the Horizon special issue on “Borderless Society.” (The call for papers is still open.)

This working paper presents a framework for conceptualizing changes in society, driven by the forces of globalization, transformations of knowledge society, and accelerating change. The framework is centered on three social paradigms, which Moravec (2008c) labels “Society 1.0,” “Society 2.0,” and “Society 3.0” — expressed as Industrial Society, Knowledge Society, and Knowmad Society. Society 1.0 reflects the norms and practices of pre-industrial to industrial civilization. Society 2.0 refers to the radical social transformations that we are experiencing today, largely due to technological change. The 3.0 or Knowmad Society points to a state of society that is in our near future, where accelerating technological change is projected to have huge transformative consequences. This text considers the human capital development consequences and necessary transformations in education to meet the needs of a rapidly transforming society, and looks into some of the challenges facing Knowmad Society in an era of accelerating change.

The paradoxical co-existence of “Education 1.0” in “Society 3.0”

Society 1.0

Society 1.0 refers to the agricultural to industrial-based society that was largely present through the 18th century through the end of the 20th century. In the early portion of this period, economic activity was centered on family-based enterprises. Children learned at home, and children worked at home. Kids and adults were engaged cross-generationally. Not only were children valuable contributors to the economy at all levels, but adults and kids learned from each other. This paradigm facilitated “learning by doing,” which was formally adopted by organizations such as 4-H, which embraced the principle that if you teach youth ideas and skills, they would, in turn, teach their parents (4-H, 2010).

The rise of the industrial economy saw growth in wage and salary-based enterprises. Kids began to work at low-level, and often dangerous jobs, until they were segregated from the workplace to maintain their welfare. Thus also began the industrialization of education, where, separated from the primary production economy, children were placed into an institutional mechanism where kids learned skills from adults (and not vice-versa), and eventually emerged from the system as “educated,” young adults, immediately employable for the industrial economy.

In Society 1.0, we interpreted data – leading to the information age. By and large, our relationships were hierarchical. That is, was easy to tell how we related with each other. Companies had reporting structures that were easy to decipher. And, we had siloed jobs and roles within organizations and communities. Moreover, we did everything we could to avoid chaos and ambiguity.Leading toward the end of the 20th century, this model worked fine. It was easy to understand. It was easily operationalized. And, it benefitted from an education system that produced workers for the industrial-modeled economy.

By the end of the 20th century, the industrialization of education and proliferation of meritocratic academic structures in the 1.0 paradigm all but eliminated the recognition of “learning by doing.” Moreover, this evolved norm generally provided socioeconomic advantages for those that successfully navigated the industrialized meritocracy (better jobs, better pay) than those who avoided it or did not survive the system .

Society 2.0

The appearance of Society 2.0 is associated with the emergence of the knowledge society that materialized in the 20th century (see esp. Drucker, 1969, 1985). Information needed to be interpreted, necessitating the creation of knowledge workers. However, as Polyani (1968) explains, the nature of knowledge, itself, is personal and is composed of tacit and explicit components. They combine in the creation of personally-constructed meanings that defy the absolute objectivity of Society 1.0’s industrial information model. Moreover, as social animals, humans engage in social networking activities and share their personal knowledge across ever complex systems. This growing ecosystem of personally-constructed meanings and values facilitated the creation of the field of knowledge management in the latter half of the 20th century, which attempted to manage the new elements of chaos and ambiguity related to personal knowledge that were inputted into organizational systems.

Advances in information and communications technologies (ICTs) facilitated the broadened production of socially-constructed meanings. Many of these advancements are made possible through the convergence of the Internet (which has become the symbol for all things networking – personal and technological) and globalization, opening potentials for globally-aware and globally-present social networks. Tools that harness ICTs are being used not only to share ideas, but also to create new interpretations. A few scholars (see, for example, Mahiri, 2004) recognize this a “cut-and-paste” culture. One potent example of this cultural shift is hip-hop, which remixes and reuses sounds, lyrics, and imagery to create new meanings that are as much unique and individual to the hip-hop artist as the creator and the original source works. Other examples include the products of “Web 2.0” tools (see esp. Cobo Romaní & Pardo Kuklinski, 2007, for a detailed list and discussion) that allow individuals to harness new social networks to remix and share ideas and media (e.g., blogs, wikis, and YouTube).

The mass availability of these tools also allows everyday people to participate in an expanded array of vocations and citizen engagement. For example, tools such as blogs, Twitter and YouTube allow for the formation of citizen journalists, who are able to directly compete with mainstream media at a miniscule fraction of the cost that mainstream media needs to develop and deliver content . The technologies also allow for the formation of citizen scientists. By donating computing processing time, non-scientifically trained individuals can search for signs of extraterrestrial intelligence (SETI@Home project), search for a cure for cancer (Folding@Home), and examine stellar particles retrieved from space (Stardust@Home). Likewise, the Audubon Society has long relied on its social network of professional and amateur birdwatchers to generate a statistically accurate estimate of birds within a given area. Furthermore, technologies allow for the greater democratization of markets, creating citizen capitalists that invest in a global market for ideas, talent, products, and other capital.

Social-orient ICTs carry constraints and limitations that forces individuals to transform how they think and act. For example, Twitter and mobile telephone short message services limit message sizes to 140 characters or less, forcing content producers to deliver clear, concise messages in limited space.

These transformations are leading to new questions for social and educational theorists that are still being debated – and research suggests that these changes are impacting the fundamental organization of the human brain (see esp. Small & Vorgan, 2008). Some key questions arising are: Does Society 2.0 dumb people down, or are we creating a new, hyper-connected, social super-intelligence? If technologically-savvy youth are composing their thoughts in 140 characters or less, are we facing a loss of literacy? In a world of Twitter, do we have any capacity for full-length novels? In a world with YouTube, can we sit through feature length films? Is technological change, paired with globalization, leading to a loss of our cultural heritages? And, finally, what is needed from education to remain relevant in a cut-and-paste society where information flows freely?

Society 3.0

“The future is already here – it’s just not evenly distributed.” – William Gibson (interviewed in Gladstone, 1999)

For most of us, Society 3.0 is in the future – possibly in the distant future. But, for a few people leading the change toward this proto-paradigm, it is very real. Three drivers are leading us to the formation of Society 3.0, which describes a world that is somewhere between “just around the corner” and “just beyond the horizon” of today’s state-of-the-art:

  1. Accelerating technological and social change;
  2. Continuing globalization and horizontalization of knowledge and relationships; and,
  3. Innovation society fueled by knowmads.

Kurzweil (1999) postulates a theory he labels the Law of Accelerating Returns to describe the evolutionary process that leads to accelerating technological and social change:

As order exponentially increases, time exponentially speeds up (that is, the time interval between salient events grows shorter as time passes). (Kurzweil, 1999, p. 30)

Figure 1. Accelerating Technological Change

[Note. The J-curve of accelerating change illustrates the exponential development and exponentially reduced costs of technologies. One example is evident in the evolution of microprocessors, which follow Moore’s (1965) Law of doubling the number of transistors on integrated circuits every two years, while also reducing the costs of associated processing speed, memory capacities, etc. The inflection point on the graph is the approximate location of the Technological Singularity, at which point change occurs so rapidly that the human mind cannot imagine what will happen next. One way of thinking of the magnitude of accelerating change is that if Moore’s Law is followed for the next 600 years, a single microprocessor would have the computational equivalency of the known Universe (Krauss & Starkman, 2004).]

In other words, change is occurring rapidly, and the pace of change is increasing. Kurzweil’s idea is founded on the proposal that as technologies evolve, the technologies improve, costs decrease; and, in turn, the process of technological evolution advances and speeds itself up, creating a J-curve of exponential, accelerating change (see Figure 1, above). As technologies evolve, so will society (Morgan, 1877). This acceleration of change, however, is also expected to impact human imagination and foresight. Vinge (1993) terms the theoretical limit of human foresight and imagination (illustrated as the inflection point on the above graphic) as the Technological Singularity. As the rate of technological advancement increases, it will become more difficult for a human observer to predict or understand future technological advancements.

Given the rate of exponential advancement illustrated by Kurzweil (2005), the rate of technological advancements in the future may seem nearly simultaneous. At this point, Vinge and Kurzweil hypothesize society will reach a point labeled the Technological Singularity. Kurzweil further believes the Singularity will emerge as the complex, seemingly chaotic outcome of converging technologies (esp. nanotechnology, robots, computing, and the human integration of these technologies).

As previously noted, technological change facilitates social change. Near future technological advancements are therefore expected to ignite periods of social transformation that defies human imagination today.

The impacts of accelerating technological and social changes on education are enormous. Today’s stakeholders in our youths’ future must prepare them for futures that none of us can even dream are possible.

Continuing globalization is leading to a horizontalized diffusion of knowledge in domains that were previously siloed, creating heterarchical relationships, and providing new opportunities for knowledge to be applied contextually in innovative contexts. In learning contexts, this means that we are becoming not only co-learners, but also co-teachers as we co-constructively produce new knowledge and its applications.

Table 1 summarizes key differences between the three social paradigms that we explore in this book. In the shift from Society 1.0 to Society 3.0, basic relationships transform from linear, mechanistic and deterministic order to a new order that is highly non-linear, synergetic and design-oriented. The effects of accelerating change suggest that causality, itself, may seem to express anticausal characteristics, due to the near instantaneousness of events experienced by a society in a period of continuous, accelerating change. Therefore, how reality is contextualized (and contextually responded to) becomes much more important to citizens in Society 3.0 than it was in previous paradigms.

Table 1: Societies 1.0 through 3.0 across various domains

Knowmads in Society 3.0

A knowmad is what Moravec (2008a) terms a nomadic knowledge and innovation worker – that is, a creative, imaginative, and innovative person who can work with almost anybody, anytime, and anywhere. Moreover, knowmads are valued for the personal knowledge that they possess, and this knowledge gives them a competitive advantage. Industrial society is giving way to knowledge and innovation work. Whereas the industrialization of Society 1.0 required people to settle in one place to perform a very specific role or function, the jobs associated with knowledge and information workers have become much less specific in regard to task and place. Moreover, technologies allow for these new paradigm workers to work either at a specific place, virtually, or any blended combination. Knowmads can instantly reconfigure and recontextualize their work environments, and greater mobility is creating new opportunities. Consider, for example, coffee shops. These environments have become the workplace of choice for many knowmads. What happens when the investment banker sitting next to the architect have a conversation? What new ideas, products, and services might be created?

The remixing of places and social relationships is also impacting education. Students in Knowmad Society should learn, work, play, and share in almost any configuration. But there is little evidence to support any claim that education is moving to the 3.0 paradigm.

Knowmads:

  1. Are not restricted to a specific age.
  2. Build their personal knowledge through explicit information gathering and tacit experiences, and leverage their personal knowledge to produce new ideas.
  3. Are able to contextually apply their ideas and expertise in various social and organizational configurations.
  4. Are highly motivated to collaborate, and are natural networkers, navigating new organizations, cultures, and societies.
  5. Purposively use new technologies to help them solve problems and transcend geographical limitations.
  6. Are open to sharing what they know, and invite the open access to information, knowledge and expertise from others.
  7. Can unlearn as quickly as they learn, adopting new ideas and practices as necessary.
  8. Thrive in non-hierarchical networks and organizations.
  9. Develop habits of mind and practice to learn continuously.
  10. Are not afraid of failure.

(Note: List inspired by Cobo, 2008)

When we compare the list of skills required of knowmads to the outcomes of mainstream education, we wonder: What are we educating for? Are we educating to create factory workers and bureaucrats? Or, are we educating to create innovators, capable of leveraging their imagination and creativity?

Sidebar

Invisible learning a new expressions of human capital development in Knowmad Society

Knowmad Society necessitates the transformation from industrial paradigm, “banking” pedagogies (see esp. Freire, 1968) that transmit “just in case” information and knowledge (i.e., memorization of the world’s capitals) toward modes that utilize the invisible spaces to develop personally- and socially- meaningful, actionable knowledge. There is growing recognition that people with unique, key knowledge and skills (i.e., knowmads) are critical for the success of modern organizations. Godin (2010) argues successful people in today’s organizations serve as “linchpins.” From an interview with Goden by Hyatt (2010), Godin states:

The linchpin insists on making a difference, on leading, on connecting with others and doing something I call art. The linchpin is the indispensable one, the one the company can’t live without. This is about humanity, not compliance.

In their book, The Element, Robinson & Aronica (2009) interview many people who have experienced success in their careers, and identified that the people they spoke with found their “element” – that is, their success was largely due to the fact that they did something they enjoyed in addition to being good at it. This runs contrary to the “just in case” industrial model of education, and suggests that if we enable more people to pursue their passions and support them, they can achieve success.

In the 3.0 proto-paradigm, the inherent chaos and ambiguity related to tremendous technological and social changes call for a resurgence of “learning by doing.” In a sense, we are creating the future as we go along. As co-learners and co-teachers, we are co-responsible for helping each other find our own elements along our pathways of personal, knowmadic development.

How do we measure learning in the invisible spaces?

The cult of educational measurement

A key concern for policymakers and other stakeholders in education is, what is being learned? In an education system focused on industrial production, this is an important quality control issue.

The linearity of the industrial paradigm thrives on mechanical processes. For example, groups of learners are expected to read books progressively, chapter-by-chapter, and recite the information and “facts” they acquired linearly through memorization. In this paradigm, the use of summative evaluation (i.e., tests) is de rigueur.

Throughout the world, we have adopted this culture of industrial learning and evaluation en masse, and created a cult of educational measurement to support it. In the United States, this is manifested through the testing requirements of the No Child Left Behind Act. In Spain, the cult is evident in the filtering processes that lead to the Prueba de Acceso. In the United Kingdom, it is expressed within the National Curriculum (Education Reform Act of 1988). And so on.

With policies with names like “No Child Left Behind,” it is hard to disagree: is the alternative to leave children behind? The unfortunate reality, however, is that in these industrial policies we tend to leave many children behind. These industrial-modeled, testing-centric regimes produce exactly the wrong products for the 21st Century, but is appropriate for what the world needed between the 19th century through 1950. As Robinson (2001) and others have argued, these fractured memorization models oppose the creative, synthetic thinking required for work in the new economy and effective citizenship.

Leapfrogging beyond the cult of educational measurement

Focus on how to learn, not what to learn.

In the Invisible Learning proto-paradigm, rote, “just in case” memorization is replaced with learning that is intended to be personally meaningful for all participants in the learning experience. Moreover, the application of knowledge toward innovative problem solving takes primacy over the regurgitation of previous knowledge or “facts.” In essence, as discussed in the previous chapter, students very much become knowledge brokers (Meyer, 2010).

Moreover, the Invisible Learning paradigm enables students to act on their knowledge, applying what they know to solve problems –including problems that have not been solved before. This contextual, purposive application of personal knowledge to create innovative solutions negates the value of non-innovation-producing standardized testing.

The “learning by doing” aspect of Invisible Learning that focuses on how to learn rather than what to learn suggests that measurement or evaluation needs to be outcomes-based in the same way that we evaluate innovations:

  • What happened?
  • Did something new happen? Something unexpected?
  • Was there a positive benefit?
  • What can others learn from the experience?

Although there is a large body of literature supporting the need for formative assessments in education (see, for example, Armstrong, 1985; Marzano, 2003; Stiggins, 2008; Stiggins, Arter, Chappuis, & Chappuis, 2007), as well as a rich educational literature theory base that suggests we need to move toward learner-centered learning (perhaps the most vocal being Dewey, 1915; Freire, 2000), summative evaluations still persist in formal learning environments that present little value to the learner. Strategies to bring the informal into the formal are already present and widely adopted in business, industry, and, ironically, within some teacher education programs.

For example, Pekka Ihanainen (2010) explains that Finnish vocational teacher education, for example, is built on a dialogical professional development model. Knowledge and expertise areas of the teachers in training are identified and compared with their occupational competency requirements and goals. Following this assessment, career development trajectories and educational pathways are developed. The system is not designed to determine only how teachers in training meet state requirements, but also relates to their individual interests and professional development goals.

Finally, releasing ourselves from the cult of measurement requires faith and confidence that we are always learning. As we will discuss in the following chapters, as human beings, we are always engaged in learning– it is one of our most natural activities.

Implementing Invisible Learning: Making the invisible visible

The difficulties in mainstreaming Invisible Learning in Western education are daunting. Formal systems are deeply entrenched. Governments believe in the formal approach (it looks good on paper and within state and national budgets). Entire industries (i.e., textbooks, educational measurement) are built around it. And, the scale of the industrialization of education leaves many people wondering if it’s worth fighting against.

The system is further reinforced, by design, to change at a glacial pace. While markets can transform and reinvent themselves virtually overnight, governments cannot. They are designed to be slow and deliberative. As a result, they tend to lag significantly and react to change more often than they proactively design orpreact to beneficial changes.

Paradoxically, despite being key components of systems most responsible for developing human capital and human development futures, education is designed to change even slower. Educational institutions and systems report to governments, respond to governmental policies, and align their programs to satisfy requirements and funding formulae established by legislative bodies. Moreover, these criteria, including establishing what to teach, depends on who sits on what committee at any given time. By relying on personalities, political gamesmanship, and feedback-looped special interests from the formal educational industrial complex, many question if the system has perhaps become too large, too slow, and unfocused.

The problem is, the emerging pressures of Society 3.0 require educational transformation today. Schools need to develop students that can design future jobs, industries and knowledge fields that we have not dreamed of. Schools need to operate as futurists, not laggards.

Is educational reform worth fighting for?

No.

Rather, it’s time to start anew. As Sir Ken Robinson eloquently states, we need a revolution, not reform (TED, 2010).

Revolutions are difficult to ignite. An entire genre of literature that Carmen Tschofen terms “change manifestos” has emerged in education that is rich in calls for change, but falls flat on actually creating the change it calls for (Moravec, 2010). The system, perhaps, has too much inertia. As Harkins and Moravec (2006) suggest in their “Leapfrog University” memo series to the University of Minnesota, perhaps a parallel approach is necessary.

Rather than fighting the system, students, parents, communities, and other life-long learners can invest in establishing parallel, new schools and/or networks of learning, discovering, innovating, and sharing. And some communities are already leading the way with innovative initiatives. For example:

  • Shibuya University Network (Japan): “Yasuaki Sakyo, president of Shibuya University, believes that education should be lifelong. At Shibuya, courses are free and open to all; classes take place in shops, cafes and outside; and anyone can be a teacher” (CNN, 2007). In essence, the entire community and its environment have become the co-learners, co-teachers, and classroom.
  • The Bank of Common Knowledge (Banco Común de Conocimientos, Spain) “is a pilot experience dedicated to the research of social mechanisms for the collective production of contents, mutual education, and citizen participation. It is a laboratory platform where we explore new ways of enhancing the distribution channels for practical and informal knowledge, as well as how to share it” (Bank of Common Knowledge, n.d.).
  • TED.com (Technology, Entertainment, Design, USA) challenges lecture-based education by creating “a clearinghouse that offers free knowledge and inspiration from the world’s most inspired thinkers, and also a community of curious souls to engage with ideas and each other” (TED, n.d.).

Redefining human capital development

To move forward in making Invisible Learning visible, we need to engage in conversations on what futures we want to create. We need to clarify our visions of the future. In China, India, and throughout much of the developing world, the vision is simple: Catch up to the West through planned development. But, in the United States, Europe, and much of the rest of the Western world, concrete visions of where we want to be in the future are absent. We assert that we either do not know where we want to be in the future or we lack the foresight to imagine ourselves in a future that is very different from today.

The consequence is that we are not making investments into our human capital development systems that will enable us to meet needs set by future challenges. We need to prepare our youth and other members of society for a future and workforce needs that we cannot imagine. Moreover, given the potential for today’s youth to be engaged productively in a “post-Singularity” era, it is important to assist them in the development of skills and habits of mind (i.e., the Leapfrog Institutes’ liberal skills outlined in the “Leapfrog” memo series archived at Education Futures). that will foster life-long learning and the innovative applications of their knowledge.

This lack of vision –and acting on it– impacts not only education, but also other areas of our socioeconomic wellbeing. Bob Herbert (2010) recently wrote for the New York Times on the United States’ new unfound willingness to invest in ideas that could increase potentials for future growth and prosperity:

The United States is not just losing its capacity to do great things. It’s losing its soul. It’s speeding down an increasingly rubble-strewn path to a region where being second rate is good enough. (Herbert, 2010)

As organizations, communities, and nations, we need to set visions for the futures we will co-create, and act upon them. Throughout the remainder of this volume, we explore some of the methods individuals, teams, and organizations may employ to help develop these visions of the future.

Using technology purposively

When engaged in conversations about invisible learning or other innovations in education, there is a tendency for people to gravitate their thoughts toward technology as if it can serve as a “silver bullet” to slay the allegorical werewolf of the persistence of the Education 1.0 model. Innovation in education does not mean “technology.” Douglas Adams (1999) elaborated on the challenges of defining the purpose of the Internet:

Another problem with the net is that it’s still ‘technology’, and ‘technology’, as the computer scientist Bran Ferren memorably defined it, is ‘stuff that doesn’t work yet.’ We no longer think of chairs as technology, we just think of them as chairs. But there was a time when we hadn’t worked out how many legs chairs should have, how tall they should be, and they would often ‘crash’ when we tried to use them. Before long, computers will be as trivial and plentiful as chairs (and a couple of decades or so after that, as sheets of paper or grains of sand) and we will cease to be aware of the things. In fact I’m sure we will look back on this last decade and wonder how we could ever have mistaken what we were doing with them for ‘productivity.’ (Adams, 1999)

Moreover, we use the term “technology” to describe new tools that we do not understand. In other words, the purposive uses of “technology” are not well defined. As a result, in educational contexts, we often take the best technologies and squander the opportunities they afford us. Roger Schank (in Molist, 2010) puts it bluntly:

It’s the same garbage, but placed differently. Schools select new technologies and ruin them. For example, when television came, every school put one in each classroom, but used it to do exactly the same things as before. The same with computers today. Oh, yes, we have e-larning! What does it mean? Then they give the same terrible course, but online, using computers in a stupid way.(Molist, 2010)

Conversely, the Invisible Learning approach to technology is purposive, pragmatic and centered at improving the human experience at its core. Specifically, this means that it is:

  • Well-defined: The purpose and applications of particular technologies need to be specified. Bringing in technologies for the sake of using technologies will likely lead to their misuse, underuse, and/or the creation of unintended outcomes.
  • Focused on developing mindware: The focus of technologies should not be on hardware or software, but on how they enhance our mindware – that is, they focus is placed on how technologies can support our imaginations, creativity, and help us innovate.
  • Social: The use of technologies is often a social experience and their social applications should be addressed. This includes the leverage of social media tools for learning such as Facebook, Twitter, etc., which are commonly blocked from formal education settings.
  • Experimental: Embraces the concept of “learning by doing,” and allows for trial and error which can lead to successes and the occasional failure – but does not create failures.
  • Continuously evolving: As an area for “beta testing” new ideas and approaches to problems, it is continuously in a state of remixing and transformation. As society evolves continuously, so must our learning and sharing.

Who gets to leapfrog to Knowmad Society?

Lastly, a problem facing Invisible Learning is one of equity and equality. Is it appropriate for a select group of “invisible learners” to leapfrog ahead of peers who may be trapped within the paradigm of “education 1.0?” If 1% of the population benefits from Invisible Learning, what should we do about the other 99%? Should they not have the right to leapfrog ahead, too?

We believe so. But, we also recognize the incredible inertia mainstream Education 1.0 possesses. Given rates of accelerating technological, social and economic change, we cannot wait. The revolution in learning and human capital development needs to begin now. This may mean starting out small, working parallel with entrenched systems, but it also means we need to lead by example.

References

 

  • 4-H. (2010). 4-H history, from http://www.4-h.org/about/4-h-history/
  • Adams, D. N. (1999). How to stop worrying and learn to love the Internet Retrieved Ocotber 10, 2010, from http://www.douglasadams.com/dna/19990901-00-a.html
  • Armstrong, J. S. (1985). Long range forecasting: From crystal ball to computer (2nd ed.). New York: Wiley.
  • Bank of Common Knowledge. (n.d.). About the Bank of Common Knowledge (BCK) Retrieved October 5, 2010, from http://www.bancocomun.org/Wiki/queEsBcc/
  • CNN. (2007). Interview: Yasuaki Sakyo Retrieved October 5, 2010, from http://edition.cnn.com/2007/TECH/11/01/sakyo.qa/
  • Cobo Romaní, C., & Pardo Kuklinski, H. (2007). Planeta Web 2.0: Inteligencia colectiva o medios fast food Retrieved from http://planetaweb2.net
  • Cobo, C. (2008, April 22). Skills for a Knowledge/Mind Worker Passport (19 commandments). Retrieved from /2008/04/22/skills-for-a-knowledgemind-worker-passport-19-commandments/
  • Cross, J. (2003). Informal learning – the other 80%, from http://www.internettime.com/Learning/The Other 80%.htm
  • Dewey, J. (1915). The school and society (Revised ed.). Chicago: University of Chicago.
  • Drucker, P. F. (1969). The age of discontinuity: Guidelines to our changing society. New York: Harper & Row.
  • Drucker, P. F. (1985). Innovation and entrepreneurship: Practice and principles (1st ed.). New York: Harper & Row.
  • Freire, P. (2000). Pedagogy of the oppressed (30th anniversary ed.). New York: Continuum.
  • Gladstone, B. (Writer). (1999). The science in science fiction [Radio broadcast], Talk of the nation: National Public Radio.
  • Godin, S. (2010). Linchpin: Are you indispensible? New York: Portfolio.
  • Harkins, A. M., & Moravec, J. W. (2006). Building a Leapfrog University v5.0 Retrieved October 5, 2010, from /2006/10/12/building-a-leapfrog-university-v50/
  • Herbert, B. (2010). Policy at its worst, New York Times, p. A21. Retrieved from http://www.nytimes.com/2010/10/09/opinion/09herbert.html
  • Hyatt, M. (2010, January 26). Book notes: An interview with Seth Godin. Retrieved from http://michaelhyatt.com/book-notes-an-interview-with-seth-godin.html
  • Ihanainen, P. (2010, September 4). [Personal communication on vocational teacher education in Finland].
  • Krauss, L. M., & Starkman, G. D. (2004). Universal limits on computation. http://arxiv.org/abs/astro-ph/0404510v2
  • Kurzweil, R. (1999). The age of spiritual machines: When computers exceed human intelligence. New York: Viking.
  • Kurzweil, R. (2005). The Singularity is near: When humans transcend biology. New York: Viking.
  • Mahiri, J. (2004). What they don’t learn in school: Literacy in the lives of urban youth. New York: P. Lang.
  • Marzano, R. J. (2003). What works in schools: Translating research into action. Alexandria, Va.: Association for Supervision and Curriculum Development.
  • Meyer, M. (2010). The rise of the knowledge broker. Science Communication, 32(1), 118-127. doi: 10.1177/1075547009359797
  • Molist, M. (2010, February 25). Schank: “El ‘e-learning’ actual es la misma basura, pero en diferente sitio”, Interview, El País. Retrieved from http://www.elpais.com/articulo/portada/Schank/e-learning/actual/misma/basura/diferente/sitio/elpeputec/20100225elpcibpor_6/Tes
  • Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics Magazine, 38(8).
  • Moravec, J. W. (2008a, November 20). Knowmads in Society 3.0. Retrieved from /2008/11/20/knowmads-in-society-30/
  • Moravec, J. W. (2008b). A new paradigm of knowledge production in higher education. On the Horizon, 16(3), 123-136. doi: 10.1108/10748120810901422
  • Moravec, J. W. (2008c). Toward Society 3.0: A New Paradigm for 21st century education. Paper presented at the ASOMEX Technology Conference, Monterrey, Mexico. http://www.slideshare.net/moravec/toward-society-30-a-new-paradigm-for-21st-century-education-presentation
  • Moravec, J. W. (2010, October 5). Review: Education Nation (by Milton Chen). Retrieved from /2010/08/17/review-education-nation-by-milton-chen/
  • Morgan, L. H. (1877). Ancient society. New York: H. Holt and company.
  • Polanyi, M. (1968). Personal knowledge: Towards a post-critical philosophy. Chicago: University of Chicago
  • Robinson, K. (2001). Out of our minds: Learning to be creative. Oxford: Capstone.
  • Robinson, K., & Aronica, L. (2009). The element: How finding your passion changes everything. New York: Viking.
  • Schwartz, P., & Ogilvy, J. A. (1979). The emergent paradigm: Changing patterns of thought and belief: SRI International.
  • Small, G., & Vorgan, G. (2008). iBrain: Surviving the technological alteration of the modern mind. New York: HarperCollins.
  • Stiggins, R. J. (2008). An introduction to student-involved assessment for learning (5th ed.). Upper Saddle River, N.J.: Pearson/Merrill Prentice Hall.
  • Stiggins, R. J., Arter, J. A., Chappuis, J., & Chappuis, S. (2007). Classroom assessment for student learning : doing it right — using it well (Special ed.). Upper Saddle River, N.J.: Pearson Education, Inc.
  • TED (Producer). (2010). Sir Ken Robinson: Bring on the learning revolution! Retrieved from http://www.ted.com/talks/sir_ken_robinson_bring_on_the_revolution.html
  • TED. (n.d.). About TED Retrieved October 5, 2010, from http://www.ted.com/pages/view/id/5
  • Vinge, V. (1993). The Technological Singularity Retrieved September 26, 2010, from http://www.kurzweilai.net/the-technological-singularity

Nine key characteristics of knowmads in Society 3.0

A knowmad is what I have previously termed a nomadic knowledge and innovation worker – that is, a creative, imaginative, and innovative person who can work with almost anybody, anytime, and anywhere. Moreover, knowmads are valued for the personal knowledge that they possess, and this knowledge gives them a competitive advantage. Industrial society is giving way to knowledge and innovation work. Whereas the industrialization of Society 1.0 required people to settle in one place to perform a very specific role or function, the jobs associated with knowledge and information workers have become much less specific in regard to task and place. Moreover, technologies allow for these new paradigm workers to work either at a specific place, virtually, or any blended combination. Knowmads can instantly reconfigure and recontextualize their work environments, and greater mobility is creating new opportunities.

In Invisible Learning, Cristóbal Cobo and I presented a “passport of skills for a knowmad” (p. 57). Refining the list a bit, I am pleased to present an update with nine key characteristics of knowmads in Society 3.0:

Knowmads…

  1. Are not restricted to a specific age. (see note, below)
  2. Build their personal knowledge through explicit information gathering and tacit experiences, and leverage their personal knowledge to produce new ideas.
  3. Are able to apply their ideas and expertise contextually in various social and organizational configurations.
  4. Are highly motivated to collaborate, and are natural networkers, navigating new organizations, cultures, and societies.
  5. Purposively use new technologies to help them solve problems and transcend geographical limitations.
  6. Are open to sharing what they know, and invite the open access to information, knowledge and expertise from others.
  7. Develop habits of mind and practice to learn continuously, and can unlearn as quickly as they learn, adopting new ideas and practices as necessary.
  8. Thrive in non-hierarchical networks and organizations.
  9. Are not afraid of failure — and see their failures as learning opportunities.

The remixing of places and social relationships is also impacting education. Students in Knowmad Society should learn, work, play, and share in almost any configuration. But there is little evidence to support any claim that education systems are moving toward a knowmad-enabled paradigm. When we compare the list of skills required of knowmads to the outcomes of mainstream education, I wonder: What are we educating for? Are we educating to create factory workers and bureaucrats? Or, are we educating to create innovators, capable of leveraging their imagination and creativity?

These questions –and more– will be explored further in the book Knowmad Society, which will be released later this year.


Note: Due to current social structures that limit participation in the new society (i.e., access to pooled health insurance), the largest growth in knowmadic workers today are among youth and older workers.

An Invisible Learning travelogue

The world is indeed flattening, and we are very happy. Since March, Cristóbal and I have presented Invisible Learning in a dozen countries, and at more than 35 events for debate and discussion. The outcomes from the project exceed our expectations — and, more importantly, open the debate to a wider and global level. Some examples that inspire us:

…and more

In less than three months since we opened the book for free access online, we’ve had about 9,500 downloads that we know of — and many, many more that we do not know of. Others are sharing the book alike, including Google Books and OpenLibra. And, it is already attracting great citations. As we embraced a unique approach to blending traditional and “new” publishing, we look forward to seeing how others will respond to our distribution approach.

We look forward to many more conversations in 2012, and we want to thank everybody that helped make Invisible Learning a success. We especially extend our thanks to Hugo Pardo, the XXI Transmedia team, the University of Barcelona, and the University of Andalucia for providing the support to make this project possible.

And, a short video about what’s coming next:

Last week in brief: BIG things brewing

A lot has happened in the past week, and I feel that bits and pieces are coming together to form a huge break from the mainstream in human capital development in the Netherlands. In brief:

On Monday, I visited TEDxDelft at TU Delft. The day was very well organized and included a selection of talks from a book maker, an astronaut, constructors of a high tech opera, a parkour exhibition, and a talk by Marcel Kampman on how to close what he calls the Dream Gap. Marcel provides 9 ideas to tackle the issue, including re-organizing TED so that it it focuses on T-shaped approaches to EDucation (hence, T-ED), that work to connect people-to-people in knowledge creation and sharing. Smart idea.

During the lunch break, Marcel and I also got together and recorded videos for each others projects. Here’s what I had to say for the Dream School initiative he’s playing a major role with for Stad & Esch:

Stad & Esch & Onderwijs & John Moravec from Stad & Esch on Vimeo.

(I’ll post my video interview with Marcel in a future post, which will include his TEDxDelft talk, as soon as it becomes available.)

On Tuesday, I visited the UniC school in Utrecht, which flips the use of technology in the classroom around to allow students to engage in learning activities that enable them to follow their own passions and interests. They bring in their own laptops or tablet devices, and spend their time on individual and team learning projects that are guided by faculty that do more to attend to their learning rather than trying to manage it. Jelmer Evers showed me around, and explained that because higher level students are required to take a standardized learning exam, they must unlearn everything the school has taught them so that they can complete the tests in an industrialized manner. Jelmer writes about this difficult situation on his blog, and fears an NCLB-like nightmare in the Netherlands may be emerging:

So far so good. If it was up to a lot of teachers and students, learning would take place more outside of the school as well. But reality is different of course. That’s where the inspection comes in. The education inspection is an organization which visits schools. In general it sees to good educational practice and particulary it audits “weak” schools which produce bad grades, most notably exam results. We’re a new school and those results are continuously improving. So in the end I think we’ll do fine (and our students better in the ways that count as well). The thing is, a lot of the skills that we focus on aren’t captured in the official results and a lot of people are scrutinizing us to see if we will be able to produce these results. We had a real nice discussion with the inspectors of course and they were very generous, but in the end it is the “result” that matters. In fact there is an ever increasing focus on results and testing, like in the United States.

Wednesday centered on a collaborative workshop at the Third National Self-Organization Day, organized by Stichting Zelforganisatie in Rotterdam, with Edwin de Bree and three students from the Sudbury education schools in the Netherlands. I spoke about Invisible Learning, and Edwin moderated a panel discussion and “speed dating”/Q&A session between the students and the workshop participants. Later in the day, Ronald van den Hoff gave a talk on his vision of Society 3.0. One interesting projection I took with me: He projects that 45% of the workforce will be comprised of knowmads or engaged in knowmad-like work.

On Thursday, my journey continued with a visit to the NHL Hogeschool in Leeuwarden for a day-long workshop on Knowmad Society and Invisible Learning, entitled “MEAT with John Moravec.” The group of faculty and students at NHL, lead by Jooske Haije, was a lot of fun to work with, not only because they are working to implement ideas from Invisible Learning and Knowmad Society into their own institution, but also because the group were excited to remix and share new ideas. I was delightfully surprised to find that they had made morning snacks out of the brain imagery that Cristóbal Cobo and I originally intended to use for the cover of our Invisible Learning book. The faculty are fired-up on making invisible learning visible, and I look forward to hearing about they will present from the workshop to an assembly celebrating the school’s 40th anniversary later this month.

Later, in the afternoon, I joined the Otava Folk High School in Finland for a talk on Invisible Learning via Adobe Connect:

On Friday, we began to bring all these pieces together. Ronald van den Hoff hosted a round table on education in Society 3.0 at Seats2Meet in Utrecht. In the world of educational innovation, with various stakeholders and initiatives largely operating independent of each other, we recognized a need to better connect and integrate the work and thinking of all key players — including students. With interim futuring activities to keep us thinking and acting, our group will again meet in January and March to plot next steps. Already, Ronald has pledged in-kind support from Seats2Meet International to support the initiative, coordinated by Annemarije Bakker, so I am quite optimistic about what we may accomplish in the coming months.

During the second half of the day, I traveled to Amsterdam with Thieu Besselink for a quick visit to the Waag Society and the Creative Learning Lab, where they have recently released a book entitled Open Design Now: Why design cannot remain exclusive. As they describe it, the book:

surveys this emerging field for the first time. Insiders including John Thackara, Droog Design’s Renny Ramakers and Bre Pettis look at what’s driving open design and where it’s going. They examine new business models and issues of copyright, sustainability and social critique. Case studies show how projects ranging from the RepRap self-replicating 3D-printer to $50 prosthetic legs are changing the world.

Finally, upon hearing that Otto Scharmer was visiting Amsterdam, I crashed the final minutes of the Crossing the Tipping Point congress:

I apologize to anybody that may have been upset that I didn’t register before stoping by (I wish I had known about the event sooner!), but I really enjoyed meeting all of you. 🙂


Coda

Throughout Northern Europe, and, in particular, in the Netherlands, I sense a real push for creating educational reforms that will enable the countries to leapfrog beyond old industrial paradigms to 21st century innovation and knowmadic paradigms. In these countries where education policies are so deeply rooted in the old Prussian tradition that aims to produce loyal factory workers and government bureaucrats, perhaps we can also find the greatest potential for meaningful change and leadership in developing Society 3.0.

The stars seem to be aligning for this shift. And, when it happens, it will be big. The right people are connecting to bring new ideas to the table, and are generating new ways for generating positive futures. For leading, facilitating, and hosting many of these conversations, I extend my greatest gratitude especially to Seats2Meet International, Ronald van den Hoff, Iris Meerts, Jooske Haije, and Edwin de Bree. Thank you for making this happen!

(I’ll be back in January.)

Whose crazy idea is it anyway?

As the 21st century digital revolution continues to disrupt the economy, and the traditional knowledge claim held by experts of the 20th century is making way for a global entrepreneurial mindset, (university) education finds itself on the verge of its most radical transformations since the industrial revolution. Whose Crazy Idea Is It Anyway is an academic endeavor that has the ambition to set the agenda in the educational landscape of the coming decade.

The work conference takes a specific angle to tackle the education issue: the (presumed) tension between entrepreneurial and academic values. Where do these values overlap and when do they contradict each other? What kinds of learning environments can start to emerge when both these worlds join forces? And how can these new learning networks be equipped to address urgent societal issues?

Following a “Yes – No – What the F*ck” intermission exercise facilitated by the Knowmads business school in Amsterdam, I gave a keynote talk that centered on invisible learning, and how higher education can contribute toward building Knowmad Society.

Later, I chatted with Andrew Keen on how we might foster entrepreneurship and expressions of innovation in higher education. Unfortunately, the studio lighting couldn’t mask my jet lag and emerging head cold:

Other interesting interviews:

Parag Khanna

Zoltan Acs

Thieu Besselink

Hrobjartur Arnason

Scale it sideways!

One of the key points we make in Invisible Learning is that new technologies and new possibilities for social configurations are expanding the ecology of options we have for learning. “Schooling” is no longer limited to just schools. Rather, we can now learn in formal environments, online, informally, and serendipitously. Moreover, we can leverage technologies to remix these modes together — so, for example, it is now possible to have a meaningful and recognized learning experience at coffee shops, city parks, bowling alleys, etc.

Just as wise investors diversify their investment portfolio, so should we build diverse portfolios of our schools. This means that we should not invest too heavily in any one strategy. If we do not know with any precision what the future will be, we cannot have one-size-fits-all schools. We need to expand our ecologies of options.

Many times we find something that works. Perhaps a new pedagogical technique …or, maybe a new type of school. One of the first things we often ask ourselves when evaluating an innovation is: How do we scale it up?

FORGET SCALING UP.

WE NEED TO SCALE SIDEWAYS IN EDUCATION.

Scaling up is how we industrialize ideas, and employ them within a top-down managed system. This works in an educational monoculture, but not in a diverse ecology. Rather than industrializing our best ideas, why not share them horizontally? That is, let’s invite people and schools to adopt them if they work for them?

Scaling sideways invites co-creation. It is dialogical.

The question we need to ask is, how can we facilitate broader horizontalized communications and sharing of best practices, etc., between schools in a diverse ecology of options? Perhaps this means that top educational leaders, governments and other interest groups need to focus less on managing; and focus more on attending to the chaos and uncertainty of a more dynamic educational ecology.

And, let’s make sure to invite the kids into the horizontalized co-creation. We are all white belts when it comes to understanding and acting on our futures. We do not have any role models to draw from. We have never been to the future before.

We must engage kids in this conversation now. Knowmad Society is their’s, but it is up to us to build it together.


Note: Adapted from my plenary talk at the Onderwijs en ondernemen “op expeditie” conference in The Hague, Netherlands on October 6, 2011.

Roger Schank on Invisible Learning: Real learning; real memory

With the free release of Invisible Learning (Aprendizaje Invisible), I am pleased to share the original English version of the epilogue, penned by Roger Schank.

The full Spanish-language text of Invisible Learning may be downloaded directly from http://www.invisiblelearning.com/download


Epilogue: Real learning; Real memory

by Roger Schank

What do people need to learn and how can they learn it?

Every curriculum committee and every training organization has at one time or another convened a committee to answer this question. Their answers are always given in terms of telling about subjects: “more math,” “leadership,” “risk management,” “company policies.” But subject matter is far less important in learning than one might think.

Consider medicine. What should a doctor learn? Doctors take courses in anatomy and immunology and so on, and certainly we want any doctor who treats us to know about these things. But, what skill do we want him to have above all? We want a doctor to make a proper diagnosis of our problem.

Now consider a car mechanic. We want him to understand how an engine works and such. But what do we want him to know more than anything? We want a mechanic to make a proper diagnosis of our problem.

The same is true of business consultants, architects, financial planners, and most other professions. We want people who can do diagnosis. But, when do we teach diagnosis? Typically we teach it within the confines of a particular subject, way at the end, after all the theories and facts have been explained. This is exactly backwards.

What is harder to learn, proper diagnosis of an illness or the names and functions of all the body parts? Most anyone can learn body parts, but diagnosis is a seriously important skill. You would never choose a doctor based on their ability to name the body parts quickly.

But, if diagnosis is difficult to learn, that implies that one needs a lot of practice in doing it. And, if it is important to learn, that implies that one ought to be practicing it very early on in life.

Other critical skills include determining causation, making predictions, making plans, and conducting experiments.

How can we learn these skills?

People learn diagnosis by doing diagnosis. This means that learning occurs when people have to do diagnosis. They might have to do diagnosis in order to figure out why they are losing a video game or why they always eat too much. While diagnosis is, unfortunately, not a subject in school, it is a process that everyone practices. They practice it without help most of the time and unless they have a parent who can help they may well be lost and might not get better at it.

Consider experimentation. We think of this as being something scientists do, when in fact, two year olds do it constantly. They try out experiments about what is good to put in their mouths, what annoying behaviors they can get away with, and what happens when they smash a favorite toy.

When we assess someone’s intelligence we can forgive lack of subject matter knowledge much more easily than we can forgive lack of diagnostic ability. Here is a Sarah Palin supporter responding to a question about Palin’s foreign policy:

I don’t know much about her foreign policy but the state that she did govern was right across the street from Russia. You know so I’m not saying that she ever had to deal with Russia but I’m sure she had boundaries issues she had to deal with. We have boundary issues right now with Mexico now.

Clearly this man has no ability to make an effective diagnosis. He does not understand causation either. In short, he seems stupid not because he doesn’t know about Palin’s foreign policy, but because he has diagnosed “illegal immigration” as something one would certainly be an expert on if one had governed Alaska. The critical issue in learning is learning to think more clearly.

How can technology play a role in teaching diagnosis and in teaching thinking in general? Or, to put this another way, why is it that courses rarely work the way I am suggesting (diagnostic issue first, facts and theories later)?

When you teach a course in a classroom, it is not so easy to start with a diagnostic problem. Such problems require real thought, hard work, recovery from errant hypotheses, and mentoring focused on creating new ways of looking at a problem. In other words, teaching diagnosis is facilitated by one-on-one interactions between teacher and student. We can do this easily online (or at home with our children), but it is very hard to do in the classroom. One value of technology is to enable one-on-one teaching in a world where people can no longer afford personal tutors. And, of course, we can model physical situations virtually. These situations can be richly elaborated and allow for exploration and discovery. It is much better to diagnose a virtual patient (or a business or an electrical problem) than a real one.

To understand why learning needs to happen this way it is important to realize that all human beings have a dynamic memory, one that changes in response to new experiences. The popular conception of memory is a static one, more like a library in which what one puts in stays there unchanged until it is needed again. This popular conception of memory causes schools to try to pour in information and test to see if it is still there. And, it causes parents to worry if their child doesn’t seem very good at either acquiring information or retaining it.

Human beings do not have static memories. They can change their internal classification systems when their conception of something changes, or when their needs for retrieval changes. For the most part, such changes are not consciously made.

Despite constant changes in organization, people continue to be able to call up relevant memories without consciously considering where they have stored them. A dynamic memory is one that can change its own organization when new experiences demand it. A dynamic memory is by nature a learning system.

People use the knowledge structures created by this memory, the ways of organizing information into a coherent whole, in order to process what goes on around them. What knowledge structures does a child have and how do they acquire them? They have knowledge structures about their own worlds: what the people they know are likely to do, how the stores and parks around them function, and they ask questions endlessly to find out more.

Understanding how knowledge structures are acquired helps us understand what kinds of entities they are. A script is a simple knowledge structure that organizes knowledge we all know about event sequences in situations like restaurants, air travel, hotel check in, and so on. We know what to expect and interpret events in light of our expectations.

If something odd happens to us in a restaurant, how do we recall it later? We would recall it if we entered the same restaurant later on, or if we had the same waitress at a different restaurant, or if we ate with the same dinner companions (assuming we ate with them rarely.), or if the food was extraordinary, or if we got sick. An incident in memory is indexed in many ways. Those indices are about actions, results of actions, and lessons learned from actions.

People can also abstract up a level to organize information around plans and goals. To put this another way, if the waitress dumped spaghetti on the head of someone who offended her, you should get reminded of that event if you witness the SAME KIND OF EVENT another time. The question is, what does it mean to be the same kind of event? Whatever this means, it would mean different things to different people. One person might see it as an instance of “female rage” and another as an instance of “justifiable retribution.” Another might see it as a kind of art.

The key issue is to learn from it. Any learning that occurs involves placing the new memory in a location in memory whereby it adds to and expands upon what is already in that place. So, it might tell us more about that waitress, or waitresses in general, or women in general, or about that particular restaurant, and so on, depending upon what we previously believed to be true of all those things. New events modify existing beliefs by adding experiences to what we already know or by contradicting what we already know and forcing us to new conclusions. Either way, learning is more than simply adding new information.

A child’s mind is acquiring and abandoning scripts. A child is wired to create patterns by expecting something to happen after something else because that is the way it happened last time. A child is set up to make generalizations, have them fail because his expectations were not met, and then create a new generalization.

And then, there is school. No actual experiences, except those about school itself, are had. So a child easily learns how one is expected to behave in school and how school functions, but he may not want to behave that way or function in that way. Reading, writing, and arithmetic, actual skills, can be taught because they are the new experiences the child is wired to seek. But other subjects, ones that are not themselves experiences, i.e., scripts that can be practiced, are much harder for a child to learn because they are not offered up by schooling, typically.

As a child gets older, he begins to understand implicitly that it is his goals, and his plans to achieve those goals, that drive his learning. While the child seeks to make his script base larger and to clarify the expectation failures he has had and to find new stories to tell or hear stories that will help him make sense of his world, the school takes a passive, librarian’s view of knowledge as something you can just deposit.

In school, all children are seen as the same, and the goal is teach them all the same stuff. But, a child processes new information in terms of the memory structures he already has. Since those are different than those of the child sitting next to him, he literally will not hear the same thing that a teacher is saying, in the same way.

The people who are in charge of schools completely misunderstand the inherently experiential nature of learning.

Students who are wired to learn from experience will have a hard time learning from static information that does not clearly relate to goals they have. Curiously, little children learn very well until they meet up with school and its arbitrary standards. They have experiences and they learn from them. The more varied their experiences, the more they can be said to know. The more they have interesting people to discuss their experiences with, the more excited and comprehending they become about their own knowledge.

Not only does school ignore what we know about how human memory and learning work, it is also concerned with teaching subjects that have nothing to do with everyday life. So students learn the wrong stuff in the wrong way.

young men grow up such blockheads in the schools, because they neither see nor hear one single thing connected with the usual circumstances of everyday life

That was written by Gaius Petronius in the Satyricon although it is just as true today.

We need to re-think our very conception of learning. What we have now simply doesn’t work. It’s time for a new model.


Dr. Roger Schank is the CEO of Socratic Arts and Managing Director of Engines for Education (a non-profit). He was Chief Education Officer of Carnegie Mellon West and Distinguished Career Professor in the School of Computer Science at Carnegie Mellon University from 2001-2004. He founded he renowned Institute for the Learning Sciences at Northwestern University in 1989 where he is John P. Evans Professor Emeritus in Computer Science, Education and Psychology. From 1974-1989, he was Professor of computer science and psychology at Yale University, Chairman of the Computer Science department, and Director of the Yale Artificial Intelligence Project. He currently works with La Salle University in Barcelona on developing new online degree programs.